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Overview

Timeline

• October 1st , 2016

• September 30th, 2018

• Percent complete: 83%

Budget

• Total project funding
‒ FY2016   $450,000

‒ FY2017    $450,000

‒ FY2018    $450,000

Barriers

• Energy density

• Cycle life

• Safety

Partners

• Collaborations
‒ SSRL, ALS, APS

‒ UCB

• Project Lead: Marca Doeff



Relevance and Project Objectives

• Develop a cathode that can cycle > 200 mAh/g while exhibiting 
minimal capacity and voltage fade
‒ Target at Li-rich compositions in Li-Ni-O chemical space that utilizes

Ni2+/Ni4+ redox to potentially overcome capacity limitation per transition 
metal

‒ Integrate a second transition metal on the first and second row to 
improve structural stability and/or contribute electrochemically active 
redox

• Gain in-depth understanding on the correlation between composition 
and electrochemistry in Li-rich layered oxides
‒ Understand the contribution of cationic and anionic redox in 

electrochemistry
‒ Investigate the potential impact of transition metal on oxygen reactivity



Milestones

• Complete the electrochemical characterization to determine the 
activation of lattice oxygen in Li-rich Ni-based metal oxides by 
varying testing conditions and optimizing electrode kinetics. 
(12/31/2017) Complete

• Investigate the structural evolution upon Li (de)insertion in Li-rich 
Ni-based metal oxides. (3/31/2018) Complete

• Synthesize alternative Li-rich Ni-based oxide cathodes with varied 
metal contents and characterize the crystal structures. Go/No-go 
decision: The alternative compound delivers a capacity > 200 
mAh/g. (6/30/2018) On track

• Investigate crystal structure evolution in selected Li-rich Ni-based 
layered oxide at various charge-discharge states. (9/30/2018) On 
track



Approach/Strategy
• Known Material Chemistry in Li-Ni-O Space

− LiNiO2: R�3m space group, Ni3+/Ni4+ redox, > 270 mAh/g
− Li2NiO2: P�3m1 and Immm space group, Ni2+/Ni4+ redox, 513 mAh/g

• General Material Design
− Electrochemical redox: Ni2+/Ni4+

− Structural stabilizing TM: multivalent metals enabling Ni redox and 
improving structural stability

LiNiO2 (R�3m) Li2NiO2 (Immm)Li2NiO2 (P�3m1)



Approach/Strategy
• Inherit the wisdom of high capacity Li-rich oxide cathodes, design 

compositions that contain Li excess and utilize Ni2+ to Ni4+ redox along 
with a second transition metal to achieve high capacity and good 
structural integrity

• Investigate the impact of anionic oxygen activity on voltage fade in Li-
rich metal oxides by combining differential electrochemical mass 
spectrometry (DEMS), advanced synchrotron spectroscopy and 
electrochemical characterization

• Design materials to elucidate the potential impact of transition metal on 
oxygen activity during electrochemistry



Anionic Oxygen Activity in LNRO

• Absence of high V plateau on initial charge and limited 
rate capability previously observed for Li1.2Ni0.2Ru0.6O2
(LNRO)

• Need to explore the impact of kinetics (e.g., low Li+
diffusivity and/or electrical conductivity) on oxygen 
redox



Gas Evolution for 18O-LNRO

• Large increase in CO2 evolution at 5 V, with 
C16,16O2, C16, 18O2, C18, 18O2 of 85.7%, 11.7% 
and 2.6%

• Almost no O2 evolution detected, and minimal 
contribution from 18O in LNRO 

• No extra capacity confirms absence of anionic 
oxygen redox in LNRO even at 5 V cutoff

CO2: 23.1 μmol/g
O2: 0

In collaboration with Bryan McCloskey at UCB



Impact of LNRO Particle Size & Morphology

• Ionic and electrical conductivity explored by reducing 
LNRO particles via ball milling method (LNRO-BM) and 
use of conductive carbon matrix (LNRO-C)

• Particle size & morphology largely modified, but bulk 
crystal structure mostly reserved

LNRO-BM

LNRO-C

LNRO



Electrochemistry of Modified LNRO

LNRO-C LNRO-BM

• Higher Li+ conductivity anticipated for LNRO-BM due to particle size reduction, 
and electrical conductivity for LNRO-C

• Modification results in a higher capacity, but still accountable for Ni/Ru redox
• Better rate capability of LNRO-BM suggests a dominating factor of ionic 

conductivity in LNRO compound

4.6 – 2 V4.6 – 2 V



Cycling Performance of LNRO

• Different voltage retention behavior observed for LNRO
• Absence of oxygen redox in LNRO useful to study role of oxygen redox in 

voltage fade (currently revisited) from a different perspective



Voltage Retention of LNRO

• Voltage fade more visible in modified LNRO, but at a much lower degree 
compared to Li1.2Ni0.2Mn0.6O2 (LNMO)

4.8 – 2.0 V
0.5 mV/s



Ni Redox during Initial Cycle

• Ni is 2+ in pristine LNRO
• Ni oxidation occurs across anodic peak at 3.75 

V and completes at 4.3 V, reduction continues 
across both cathodic peaks at 3.6, 3.4 V

Hard XAS collected at SSRL



Ru Redox during Initial Cycle

• Ru is 4+ at pristine state
• Ru oxidation/reduction follows similar trend to Ni, but substantial charge 

compensation occurs at low V region (cathodic peak of 3.4 V)

Hard XAS collected at SSRL



Structural Evolution of LNRO during Cycling

Original C2/c
New C2/c

• Super lattice peaks around 13⁰ (green highlight) reserved upon cycling
• Structure is a key factor in electrochemistry (i.e., V fade) of Li-rich layered 

oxides beyond oxygen redox



Structural Evolution of LNRO Upon Delithiation

LixNi0.2Ru0.6O2

• Delithiated samples prepared by chemical oxidation method
• Different from Li-rich LNMO, a new monoclinic C2/c phase formed at ~ 0.6 Li

Note: Li content (x) is theoretical #

New C2/c

c

a

Pristine C2/c

c

a



Structure Characterization of LNRO Upon Delithiation

Pristine LNRO Delithiated LNRO

• Rietveld refinement of pristine and delithiated LNRO XRD patterns, based on 
monoclinic C2/c, gives a good fit but different lattice parameters (∆V = 5.4%)



Structure Characterization of LNRO Upon Li Extraction

• XRD reveals original C2/c at 1.2 ≤ x ≤ 0.8, a new C2/c phase at x < 0.4 with two 
phases in between

• Subtle change in lattice parameter a, b, but c lattice shrinks for new C2/c phase



Structural Evolution Probed by HR-TEM

• LNRO layered structure remained after initial charge and discharge
• New monoclinic C2/c phase after charge and c lattice parameter confirmed by

HR-TEM & STEM (9.91, 9.34 and 9.81 Å at pristine, charged and discharged
state, respectively)

In collaboration with Dong Su at BNL
Dch 2.0 VCh 4.8 V



Structural Evolution Probed by HAADF-STEM

• Layered structure and Li/TM ordering in TM layer well
remained after charge

• Local Li/TM ordering tends to decrease after
discharge, such local TM environment change likely
correlates with V decay
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Crystal Structure Varies with Ni/Ru Ratio
Synchrotron XRD collected at APS

• LNRO compositions synthesized to examine the 
correlation between anionic oxygen redox and 
TM redox combination

• Crystal structure and electrochemistry clearly 
varies with TM ratio, resembling that of layered 
oxide



Gas Evolution of Varied Ni/Ru Ratio

CO2: 0.7 umol
O2: 0.1 umol

Li1.2Ni0.4Ru0.4O2

CO2: 8.5 umol
O2: 0.1 umol

• CO2 evolution increases with Ni content, however, it remains low compared to 
Li-rich LNMO 

• Minimal O2 detected in LNRO of varied Ni/Ru ratio, regardless of crystal 
structure, reversible O redox may differ

In collaboration with Bryan McCloskey at UCB



Responses to Previous Year Reviewers’ Comments

• Comment #1: All reviewers commented the significance and relevance in
understanding oxygen activity and its involvement in Li-rich layered oxides, but
one reviewer questioned the purpose of Ru use
 We appreciate the positive comment. Li-rich systems are promising to

warrant high capacity. Understanding origin of its high capacity beyond TM
redox is of critical importance. Oxygen redox appears intuitive because
Mn4+ can not be further oxidized. But direct probe of oxygen is challenging.
Mn-, and Ru-based compounds enable studies on oxygen redox, impact of
TM and its possible correlation with voltage fade from a material perspective

• Comment #2: Early charging at < 4.5 V should be due to Mn(III) to Mn(IV)
because of CO2/O2 evolution
 No O2 detected before a plateau at 4.55 V. Isotopic labeling and in-situ gas

analysis reveals CO2 evolution originates from carbonate residual.
Therefore, Mn3+ to Mn4+ does not contribute capacity at < 4.5 V

• Comment #3: Reviewers suggested to focus on a fundamental and thorough
study that give a complete understanding of the material system
 It is a valuable advice, we focus on fundamental understanding of oxygen

activity in compounds based on Ni/Ru to explicit the key factor in oxygen
involvement in Li-rich metal oxides



Collaborations
• Drs. Marca Doeff, Guoying Chen (LBNL), Drs. Wanli Yang, Matthew Marcus 

(ALS), Drs. Dennis Lordnund, Apurva Mehta (SSRL) – synchrotron in-situ

and ex-situ XRD, XAS

• Prof. Bryan McCloskey (UC Berkeley) – gas evolution measurement

• Dr. Vince Battaglia – in-situ cell fabrication

• Dr. Dong Su (BNL) – HR-TEM, STEM

• Dr. Ashfia Hua (ORNL) – neutron diffraction

• Dr. Robert Kostecki (LBNL) – Raman spectroscopy

• Prof. Gerbrand Ceder, Kristin Persson (UC Berkeley) – material modelling

• Prof. Shirley Meng (UCSD) and Dr. Jagjit Nanda (ORNL) – layered oxide 

cathode development & characterization



Remain Challenges

• Distinctive anionic oxygen redox activity of layered oxides with
different TMs has been revealed. However, fundamental
understanding of the key factor(s) to activate anionic oxygen
redox and promote its reversibility/suppress irreversibility in Li-
rich systems is not fully understood, therefore, selection of
favorable TMs is challenging

• Role of anionic oxygen redox in voltage fade of Li-rich layered
oxide is being revisited. Utilization of reversible oxygen redox
without voltage fade is the key to practically implement high
energy Li-ion cathode



Proposed Future Work

• Further investigate the impact of TM combination on anionic 
oxygen redox in Li-rich layered oxides to understand the key 
factors in oxygen redox involvement
‒ LN1-yRyO of varied Ni/Ru ratio, thus different Ni/Ru redox 

contribution in electrochemistry, enables studies on oxygen 
redox and its correlation with TM redox

• Determine the crystal structure of LN1-yRyO of varied Ni/Ru ratio, 
particularly, best performing Li1.2Ni0.4Ru0.4O2

• Identify the chemical state of Ni/Ru in pristine LN1-yRyO and 
electronic evolution of TM and O during electrochemistry

• Investigate the voltage retention behavior, identify the role of 
crystal structure and oxygen redox in voltage fade

Any proposed future work is subject to change based on funding levels



Summary
• Kinetic factors potentially influencing oxygen activity in LNRO investigated to 

verify absence of oxygen redox, suggesting competition of TM redox with O 
redox

• Voltage fade phenomenon observed in LNRO, but at a much lower degree, 
suggesting other factor(s) beyond oxygen redox accounts for voltage fade in 
Li-rich layered oxides, but oxygen redox accelerates V fade

• Structural evolution mechanism in LNRO during cycling studied to explore the 
correlation between crystal structure and voltage fade

• Layered monoclinic structure remained after initial charge, but Li/TM ordering 
in TM layer decreases, likely contributes to voltage fade during cycling

• LNRO compounds of varied Ni/Ru ratio synthesized to further investigate 
impact of TM combination on oxygen redox, as well as role of crystal structure 
and oxygen redox, if any, in voltage fade
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